If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+17x=0
a = 11; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·11·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*11}=\frac{-34}{22} =-1+6/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*11}=\frac{0}{22} =0 $
| 162-a=48 | | 10(2-x)=4(x-9);4 | | –2x+130=180–4x | | 11+x=-4x-5 | | 3^2x-4(3x^+1)+27=0 | | 2/5*n=6 | | 1x=25=25000 | | n*18=9 | | 40x+1000=25,000 | | x-71=17 | | 3x+2=4(3x–2) | | ((2x^2/4)-x/6)=3/2 | | (5n-4)^2=0 | | 25x40=1000 | | 3x^2-x=9 | | 3*2^3x+2=12*2^6 | | 40x+25=1000 | | 1x+25=1000 | | (7x+12)/(4x+3)=2/5 | | (8y+32)-(3y+15)=3y+3 | | 8y+32-3y+15=3y+3 | | 5×15x=95 | | 25,000x+0=1000 | | 1x+$25=1000 | | $25+1x=1000 | | 3x-5x=-6-10 | | (s+2)²+(2s+2)²=4 | | 12y-y-3=5(2y+1) | | (2m-1)²=(m+1)² | | 25x+0=1000 | | 36=-4(x+9) | | 40x+0=1000 |